Propulsion Hardware Selection:
Tanks and Thrusters

FAME Technical Interchange Meeting (TIM)

March 20-21, 2001

Mike Osborn
NRL
202-767-9168
mosborn@space.nrl.navy.mil
Agenda

- Propulsion System and Mission Overview
- Critical Assumptions
- Mission Analysis
- Propulsion Analysis
- Propellant Budget
- Margin Analysis
- Tank Selection
- Tank Procurement
- Thruster Selection and Procurement
- Issues
Overview: Propulsion Mission Requirements

• Provide Thrust for Spacecraft Orbit Raising, Attitude Control, and Stationkeeping

• Provide Single Fault Tolerant Design
 - Thruster Failure
 - Valve Leakage

• 5 Year Mission Life
 - Design For Delivery by August 15, 2003
 - Derived From Integrated Master Schedule
 - Design, Qualify, and Test for FAME Mission and Launch Environments
 - NCST-TP-FM001, FAME Test Plan
 - New or Re-Designed Systems Will Have Protoflight Testing

• Meet Launch Base Safety Requirements and Verification Process
 - EWR-127-1 TBD Version, Tailored for FAME

• Support Science Mission Requirements
 - Minimize CG Migration, Plume Contamination, and Minimum Impulse Bit

• Minimize Cost and Schedule Risk
 - Provide Most Flexible Design With Given Schedule and Budget
Overview: FAME Propulsion Schematic

- Gas Service Valve
- Hydrazine Tank With PMD
- Dual Solenoid Valves
- (8) 1 or 5 N Thrusters
- (4) 22 N Thrusters (Open Trade Study)

Additional components:
- Pressure Transducer
- Filter
- Latch Valve
Overview: Mission Sequence

• Launch Delta 2925 into FAME Super-Synchronous Transfer Orbit
 - 185 by GEO Alt + 320 Km
 - Apogee Selected for AKM Disposal Orbit
 - 10.6 Hour Period
 - Activate S/C and Wait 2.5 Days for Phasing and Orbit Determination
 - S/C Pointing, Slew Maneuvers, Spin-up, Spin Axis Precession, Nutation Control

• Fire On-Board STAR 37XFP Solid Rocket Motor to Circularize into a Circular Super-Synchronous Orbit
 - 1 Minute SRM Burn
 - Orbit Nominally Circular at GEO + 320 km
 - Dispose of the STAR 37XFP Transfer Stage
 - Orbit Drifts for Approximately 1 Month to Mission Longitude
 - Deploy Sunshield
 - Perform Payload Check Out

• Correct Launch Vehicle Errors and Transfer to the Mission Orbit With On-board Hydrazine System
 - 3 Axis Inertial Pointing With ACS Limit Cycle Motion
Critical Assumptions (1 of 2)

• No Major Changes to the Current Mission Design
 - Delta 2925-10 Launch Vehicle
 - Thiokol STAR 37XFP or Equivalent Solid Upper Stage
 - No Significant Changes in Mission Orbit (i.e. Inclination, Stationkeeping Requirements)

• No Major Component Failures
 - Nominal 3 Sigma Performance for the Launch Vehicle and Upper Stage

• Fuel Cg Knowledge and Propellant Slosh Are Not ADCS Control Issues for Science Collection
 - Assumption of 2 mm Cg Knowledge

• Pointing Accuracy of ±2° for Upper Stages
 - Three Sigma Error For Delta LV is Equivalent to ±1.5°
• 3rd Design Iteration Worst Case Mass Properties Dated 3/07/01 Are Representative of the Final Payload
 - Mass and Inertia Properties
• Debris Mitigation Plans Per NASA NPD 8710.3 and Assessment Per NSS 1740.14 are Approved
 - Normal Review Cycle Includes Submittals at Program PDR and CDR
• No Thruster ACS During Science Collection
 - Solar Precession, Nutation Control, or Fine Spin Control
 - Long Duration Limit Cycle Motion is Fuel Intensive
Mission Analysis Methodology

• Define Disposal Orbits for Debris Mitigation
 - Determine AKM Transfer Stage and Final FAME Disposal Orbits
 - Based on NASA Guidelines
• Evaluate Launch Vehicle Performance to FAME Insertion Orbit
 - Penalize Delta 2425 for Performance to Higher FAME GTO Orbit
 - Mass Penalty is About 10 kg
• Perform AKM Sizing
 - Performance, Loads, Propellant Requirements Including Offload, Determine Mass Allocations and Staging Efficiencies
• Perform Stage Error Analysis
 - Pointing and Total Impulse Error Evaluation and Correction
• Evaluate Orbit Design
 - Calculate Delta Velocity Requirements For Maneuvers
 - Investigate Sub-Synchronous Transfer Option
• Calculate On-Board Hydrazine Requirements
 - Size the Hydrazine Tank
Propulsion Analysis

• Solid
 - Staging Performance for the Delta and STAR 37XFP
 - System Sizing and Motor Selection
 - Calculate Propellant Offloads and Offload Capabilities
 - Perform Total Impulse and Pointing Error Analysis
• Mass Properties Investigated at the Component Level
 - Provided Solid and Liquid System Mass Input Into Mechanical Mass Properties
• Liquid Hydrazine System Fuel Sizing
 - Blowdown Pressurization Pressurization Budget
• Thruster Performance
 - Thrust, Isp, Minimum Impulse
 - Inputs Supplied to Orbit and ACS Analyst
• Final Tank Sizing
 - Hardware Selection and Availability
 - Mechanical and Geometric Constraints
ACS Analysis

• Evaluate Mission Thruster Maneuvers
 - Inertial Pointing
 - Slew Maneuvers
 - Spin Maneuvers
 - Active Nutation Control (ANC)
 - Spin Axis Precession (SAP)
 - ACS During Delta V Maneuvers

• Assumptions Throughout Analysis
 - Worst Case Mass Properties Mass and Inertia
 - Nominal Thrust Performance
 - Conservative Isp
 - Nominal Thruster Moment Arms
 - Nominal Nutation Time Constant
 - Worst Case Thruster Alignment ±1°
 - No ANC During Solid Rocket Motor Firing
Propellant Budget

<table>
<thead>
<tr>
<th>Event</th>
<th>Event Description</th>
<th>Delta V (m/s)</th>
<th>Ave Isp (sec)</th>
<th>Initial Pressure (psia)</th>
<th>Ave Thrust (N)</th>
<th>Initial Mass (kg)</th>
<th>Delta V Prop (kg)</th>
<th>ACS Prop (kg)</th>
<th>Prop Remaining (kg)</th>
<th>Burn Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Null Delta 3rd Stage Tip Off</td>
<td>160</td>
<td>350.0</td>
<td>5.23</td>
<td>1771.1</td>
<td>0.13</td>
<td>72.4</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Inertial Pointing (3-axis limit cycle)</td>
<td>160</td>
<td>348.7</td>
<td>5.19</td>
<td>1771.0</td>
<td>0.40</td>
<td>72.0</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Slew Manuevers</td>
<td>160</td>
<td>345.0</td>
<td>5.15</td>
<td>1770.6</td>
<td>0.18</td>
<td>71.9</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Safe Hold Mode Spin up/down</td>
<td>160</td>
<td>343.4</td>
<td>10.26</td>
<td>1771.1</td>
<td>0.13</td>
<td>72.4</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Spin-up FAME with SRM</td>
<td>220</td>
<td>342.4</td>
<td>9.96</td>
<td>1770.3</td>
<td>2.23</td>
<td>69.5</td>
<td>482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Active Nutation Control</td>
<td>160</td>
<td>323.1</td>
<td>4.15</td>
<td>1768.1</td>
<td>0.18</td>
<td>71.9</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Spin Axis Precession (6 degrees)</td>
<td>160</td>
<td>231.7</td>
<td>3.45</td>
<td>1752.5</td>
<td>0.35</td>
<td>71.9</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>STAR 37XFP Firing</td>
<td>290</td>
<td>230.2</td>
<td>38030</td>
<td>1752.1</td>
<td>53.6</td>
<td>1618</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Active Nutation Control</td>
<td>160</td>
<td>206.4</td>
<td>3.34</td>
<td>1026.5</td>
<td>1.00</td>
<td>47.2</td>
<td>502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Despin FAME with Spent STAR 37XFP</td>
<td>220</td>
<td>216.7</td>
<td>6.38</td>
<td>1028.5</td>
<td>1.95</td>
<td>48.2</td>
<td>658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Slew Manuevers</td>
<td>160</td>
<td>209.8</td>
<td>3.11</td>
<td>1026.5</td>
<td>1.00</td>
<td>47.2</td>
<td>502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Inertial Pointing (3-axis limit cycle)</td>
<td>160</td>
<td>206.4</td>
<td>3.03</td>
<td>1025.5</td>
<td>2.59</td>
<td>44.6</td>
<td>1341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Hydrazine to Make-up Star 48 TI Error (.5%)</td>
<td>220</td>
<td>198.1</td>
<td>62.63</td>
<td>1022.9</td>
<td>13.44</td>
<td>30.8</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Hydrazine to Make-up Star 48 Pointing Alt Error</td>
<td>220</td>
<td>163.2</td>
<td>56.42</td>
<td>1009.1</td>
<td>0.42</td>
<td>30.4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Hydrazine to Make-up Star 37XFP TI Error (.5%)</td>
<td>220</td>
<td>162.3</td>
<td>54.87</td>
<td>1008.7</td>
<td>0.11</td>
<td>26.3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Hydrazine to Make-up Star 37XFP Pointing Error</td>
<td>220</td>
<td>154.2</td>
<td>53.46</td>
<td>1004.6</td>
<td>0.05</td>
<td>26.2</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Jetison STAR 37XFP and Adaptor</td>
<td>0.5</td>
<td>220</td>
<td>53.36</td>
<td>1004.6</td>
<td>0.23</td>
<td>26.0</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Slew Manuevers</td>
<td>160</td>
<td>153.7</td>
<td>2.30</td>
<td>890.4</td>
<td>0.03</td>
<td>25.9</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Inertial Pointing (3-axis limit cycle)</td>
<td>160</td>
<td>153.6</td>
<td>2.30</td>
<td>890.3</td>
<td>0.24</td>
<td>25.7</td>
<td>162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Decrease Perigee to Final GEO Orbit</td>
<td>220</td>
<td>153.2</td>
<td>52.37</td>
<td>890.1</td>
<td>2.24</td>
<td>23.3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Decrease Apogee to Final GEO Orbit</td>
<td>220</td>
<td>148.9</td>
<td>50.93</td>
<td>887.7</td>
<td>2.24</td>
<td>20.9</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Slew Manuevers</td>
<td>160</td>
<td>144.9</td>
<td>2.15</td>
<td>885.3</td>
<td>1.74</td>
<td>19.2</td>
<td>1271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Inertial Pointing (3-axis limit cycle)</td>
<td>160</td>
<td>142.1</td>
<td>2.10</td>
<td>883.6</td>
<td>2.15</td>
<td>17.0</td>
<td>1602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Safe Hold Mode spin up/down</td>
<td>160</td>
<td>138.7</td>
<td>4.12</td>
<td>881.4</td>
<td>1.56</td>
<td>15.5</td>
<td>595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Raise Apogee to Disposal Orbit</td>
<td>5.44</td>
<td>220</td>
<td>136.4</td>
<td>46.72</td>
<td>879.8</td>
<td>2.22</td>
<td>13.1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Raise perigee to Disposal Orbit</td>
<td>5.44</td>
<td>220</td>
<td>133.1</td>
<td>45.58</td>
<td>877.5</td>
<td>2.21</td>
<td>10.7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2% Unusable Residual</td>
<td>160</td>
<td>129.9</td>
<td>3.86</td>
<td>875.1</td>
<td>1.45</td>
<td>9.3</td>
<td>590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Fuel Margin</td>
<td>160</td>
<td>128.0</td>
<td>42.48</td>
<td>873.7</td>
<td>9.27</td>
<td>0.0</td>
<td>342</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

72.6 Kg (160 lb) Propellant Load
Margin Analysis (1 of 3)

• Worst Case Margin is 12.8% of Total Propellant Budgeted
 - Nominal Mission Case Margin is 24.7% of Total Propellant Budgeted
 - Nominal Mass, Thruster Performance, Error Correction
• Additional Margin is Built-in to Worst Case Margin Via Conservative Analysis Assumptions
 - Worst Case Launch Vehicle Throw Weight
 - Worst Case Mass Properties
 - Worst Case Launch Vehicle Insertion Error
 - Worst Case (Sum) STAR 37XFP Upper Stage Error
 - Can RMS, RSS, or Perform Monte Carlo Analysis
 - Worst Case Mission Plan
 - Longest Dwell at Energy Dissipating States
 - ANC, Limit Cycle Motion for Inertial Pointing
 - Highest Disposal Orbits for Debris Mitigation
Margin Analysis (2 of 3)

• Additional Propulsion Margin is Possible
 - Can Fill Propellant Tank with 203 lb of Hydrazine (31% Propellant Margin) and Implement a Secondary Pressurization System
 - Requires 2 or 4 Pressurization Tanks to Maintain Spacecraft CG
 - Tank Volume of 1045 cu. In. Required for 3:1 Blowdown
 - Four 20.3 cm (8 in) Diameter Pressurization Tanks
 - Can Move to Higher Blowdown Ratio (Currently 4.78:1)
 - Higher Beginning of Life Thrust and Lower End of Life Thrust
 - Re-Evaluate Tank Maximum Pressure of 350 psia
 - Current Safety Margin is 2:1, Can Move to 1.5:1

• Additional Delta V Margin
 - Above GEO Disposal Orbit is CSR Baseline but Below GEO Disposal Has Staging Efficiency That Reduces Overall System Mass
 - Increases Effective Launch Vehicle Throw Weight
 - Conservative Isp of 220 vs. 230 sec

• Additional AKM Propellant Option
 - Overfill the AKM to Guarantee No Orbit Undershoot with Solid
 - Solid Has Higher Isp Performance and Extra Propellant Capability
Margin Analysis (3 of 3)

• Orbit Analysis Performed for LV and Transfer Stage Errors
 – Worst Case Delta V’s Generated (Poor Man’s Monte Carlos)
 - Lowest LV GTO Orbit, Lowest STAR 37XFP Performance
 - Error Correction Would Occur at More Efficient Orbital Positions
 - Apogee Error Corrected in GTO
 - Delta V Equivalent of 39.1 m/s (Propellant Budget Carries 49 m/s)
 – Additional ACS Margin
 - Increase Thruster Moment Arms with Booms
 - Reduce 1 Hour Pre AKM Spin Time (Nutation Control Propellant)
 - Lower Intermediate Spin Rate Prior to High Spin at AKM Firing
 - Eliminate or Relax Inertial Pointing Requirements for Limit Cycle Motion Allowing a Possible Flat Spin Attitude
 - Requires Power and ACS Sensor Analysis
 - Can Boost Conservative Isp of 160 to 180 sec for Thruster Pulse Mode Operations
 - Implement Pure Off-Pulse ACS for Delta V Maneuvers
Tank Selection (1 of 2)

- Tank Selection Issues Requires Additional Analysis
 - Requires Quantification of Propellant and Pressurization
 - Single Blowdown Tank vs. Augmented Pressurization Tank
- Tank Geometry
 - Oblate Spheroid Desired but Has Limited Availability
 - Reduces Spacecraft Overall Height Allowing Preferred Sun Angle Between the Sun Shield and Payload
 - Mounting Options Include Boss and Girth (Tabs or Skirt)
- PMD Selection Limits Availability
 - Passive PMD Is Not Possible (Accelerations, Spin, and CG Control)
 - Trade Elastomeric Tank Bladder vs. Metal Diaphragm
 - Metal Diaphragm Has Higher ΔP From Gas to Liquid
 - Metal Diaphragm Has Better Cg Control During Accelerations
 - Metal Diaphragm Is Single Use Only
 - Metal Diaphragm Eliminates Gross Mass Motion Slosh
 - Elastomeric Diaphragm is Less Expensive
Tank Selection (1 of 2)

• Cost and Delivery Schedule
 - Heritage Design Is Desirable
 - New Design and Qualification Possible (Lengthy Delivery and Costly)
 - New Tank Design and Qualification Requires 24 Months ARO
 - Program Schedule Supports New Tank Procurement
 - Multiple Designs and Vendors Available
 - PSI, Atlantic Research, Arde, Keystone
• Implication of Oversizing the Hydrazine Tank
 - Lowers the System Blowdown Ratio
 - Smaller BOL to EOL Thrust Variation
 - Effects on Nutation Control (Requires High Thrust)
 - Effects on Minimum Impulse (Requires Low Thrust)
 - Can Overfill to Correct Blowdown Ratio
 - Mass Penalty for Unused Propellant
 - An Oversized Tank is an Excellent Reservoir for Mass Margin
 - Allows for Contingency Operations, Science Mission ACS, or Extended Mission
Tank Baseline: PSI P/N 80388

- Maximum Expected Operating Pressure (MEOP) 350 psia
- Proof Pressure 527 psia, Minimum Burst 700 psia
- Qualified Propellant Load of 72.56 kg (160 lb)
- Geometry
 - 57.15 cm (22.5 in) Outside Diameter
 - Spherical with Offset Polar Outlet Tube
 - Volume 91.1 Liters (5555 cu in)
 - Tank Weight 7.03 kg (15.5 lb)
 - Four Girth Mounted Tabs With Slots
 - AF-E-332 Elastomeric Bladder
- Designed and Previously Flown for KoreaSat, CENTAUR, TOMS-EP, ROCSAT, KOMPSAT, INMARSAT 3, GGS
- Full Mil-Std-1522 Design, Analysis, and Qualification Testing
 - One Known Safety Waiver Required for Last Girth Weld Stress Relief
Tank Procurement Status

- Component Specification Under Development
 - Document Number TBD
- Detailed Discussion With Potential Vendors Ongoing
 - PSI, Arde, Atlantic Research, Keystone
- Baseline PSI Tank is Off-the-Shelf With 18 Month Delivery
- Procurement Package Compiled and Submitted by 13 April 01
 - Initiated Dialog with Contracts Personnel
 - Purchasing Agent TBD
- Auxiliary Pressurization Tanks Are Still Under Investigation
 - Lead Time is Shorter Since Tank Does Not Have PMD
 - 14 Month Delivery Allows a PDR Decision
 - Multiple Vendors Possible
 - Kaiser Compositek
 - Lincoln Composites
 - Structural Composites Industries (SCI)
Propellant Slosh

- Fuel Sloshing in the Propellant Tank Has Not Been Analyzed
- Gross Mass Sloshing is Well Understood
 - CG Control During Expulsion and Accelerations
 - Controlled With Tank Specifications
 - Verified With Qualification or Acceptance Testing
 - Non-Destructive Testing is Possible With Elastomeric Diaphragm Tank but Not Metallic Diaphragm
- Fine Motion of Propellant and Damping Characteristic is Not Well Understood
 - Interaction Between Excitation Sources and Damping Propellant Motion
 - Evaluate All Excitation Sources: Thrusters, Motors, Torque Rods, Thermal Variations, Eclipse Effects
 - Model Propellant Viscous Motion and Damping Effects
 - Mathematical Models Will Take Several Months to Generate
 - Model Verification Through Testing is Not Possible
 - 1g Environment Swamps Subtle Slosh Effects
Thruster Procurements

- Component Specification Under Development
 - Document Number TBD
- Detailed Discussion With Potential Vendors Ongoing
 - General Dynamics, Atlantic Research, ValveTech Consortium
- Procurement Package Compiled and Submitted by 13 April 01
 - Initiated Dialog with Contracts Personnel
 - Thrusters Delivery Is 20 Months
 - Purchasing Agent TBD
- Minimum Impulse Bit Under Investigation
- Multiple Vendors Available
- Multiple Thruster Procurements On-Going For Other Customers
 - Manufacturing and Cost Efficiency
Hydrazine Thrusters (1 of 2)

- **Thruster Quantity and Force Selection**
 - 8 1N or 5N (from CSR) Thrusters
 - Spin Control and 3-Axis ACS
 - Zero, Two, or Four 22 N Thrusters
 - SAP, ANC, and Vehicle Delta V Thrusters
 - Minimum Impulse Bit and Maximum Thrust Are Design Drivers
 - Conflicting Requirements for a Single Thruster Size

- **Multiple Designs and Vendors Including**
 - Hamilton Standard 22N (5 lbf)
 - In Stock at NRL From Previous Programs
 - Single Seat Valve Originally Included was Replaced with Dual Seat Valve For Clementine
 - Documentation Status Unknown
 - Atlantic Research 22 N Thruster
 - MR-106E 22 N (5.0 lbf)
 - MR-50S,T 22 N (5.0 lbf) GOES, Viking, GPS, Voyager
 - MR-111C 4N (1.0 lbf) Flown on Clementine
Hydrazine Thrusters (2 of 2)

- MR-111E 2N (0.5 lbf)
 - Possible Compromise Between the Conflicting Small Impulse and High Thrust Requirements

- MR-103C 1N (0.2 lbf)
 - Small Impulse Bit, but Being Discontinued by Manufacturer
 - Ibitmin= .0044 N-sec @15ms and 100 psia

- MR-103D 1N (0.2lbf) Long Life Thruster Variant
 - More Costly Than Warranted by FAME Mission Requirements

- MR-103G 1N (0.2 lbf) IRIDIUM Design
 - Ibitmin= .0133 N-sec @15ms and 100 psia

- MR-103H 1N (0.2 lbf) Smallest Impulse Bit
 - Single Fast Acting Solenoid Valve Rather Than Dual Valves
 - High Cost ~$80K
 - Ibitmin= .0022 N-sec @15ms and 100 psia

- ValveTech Consortium 0.2 lbf Low Cost Thruster
 - Recently Flight Demonstrated
 - Qualification and Delivery Status TBD
Propulsion Issues

• Validity of Critical Assumption Used to Select Tank
• Tight Schedule to Meet Government Procurement Deadlines
 - Expedited Procurement Process Required If Procurement is Delayed
• Undefined Tank Slosh Requirements
• Major Procurements Are Well Before CDR (Sept 01)
 - Analysis Accuracy Due to Vehicle and Mission Design Uncertainty
• Minimize Different Thruster Designs for Cost Efficiency (Specifications, Procurements, Integration, and Test Simplification)
• Thruster Solar Precession Back-Up Requirement
 - Small Impulse Bit Control System Would Be Required
 - Requirement Evaluation and Definition Are Necessary
 - Long Lead Items Are Required
 - 18 Months for the Tank
 - TBD Months for Pulsed Plasma Thruster
• Thruster and Tank Analysis Are Still Under Investigation
 - We Have the 90% Answer - Good Enough